
i~~~, *cl vlr
t

~i
______ 

END
Y E

7 —79
ERME a

DDC

/



_ _ _  ‘~ L ~ 2.2
L ~~~

I i  ‘
~ 

HIII~°
f~

L8

11111’ .25 IflhI~ IliU~
MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF SIA NDA RDS-1963 -A



UNIVERS ITY OF CALIFORNIA , SAN DIEGO
Department of Applied Mechanics and Engineering Sciences
La Jolla, California 92093

:~~~~

—-

NOTE ON THE ~ FFECT OF TRANSVERSE ~HEAR DEFORMATION
IN LAMINATED A)IISOTROPIC PLATESJ ~

E~~~~~i~~:r ~~~~~)

C’S

6’

(~. ——— —.——. —

Prepared for
~ OFFICE OF NAVAL RESEARCH

Washington , D.C.

-

\ t ~~~~~~~~~
t
~~~~~~~~5,3



NOTE ON THE EFFECT OF TR A NSVERSE SHEA R DE FORMAT ION

IN LAMINA TE D ANISO TROPIC PLATES

by
L

E. Reissne r

Department of Applied Mechanics and Engineer ing Sc iences
UNIVERSITY OF CALIFORNIA . SAN DIEGO

La Jolla , California 92093

ABSTRACT

Derivation of two-dimensional equations for  elastic deformations

of laminated anisotropic pla tes, based on the assump tion of a Kir chhoff-

distribution of p r imary  atrains , in conjunction with  the use of the Castiglt ano

variat ional  princ iple for stresses , or a variationa l princ iple for stresses

and displacements . A discussion Is given of the relation of the present  work

to some earlie r work.
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— 
Note on the Effect of Transverse Shear Deformation

t
in Laminated Anlsotropic Plates

By E. Reissner

Introduction. The recent work by Argyr is  et al (iJ and by C. A.

Cohen (2J on the approximate determ ina tion of transverse shear stress

coefficien ts for lamina ted anisotropic plates ( and shells ) has shown the

relative cosnplexity of the task of extending the earlier analysis of the effect

of bransverse shear in isotropic homogeneous [3J as well as sandwich-type

plates [4) to the case of laminated anisotropic plate.. The point of departure

of the following considerations, which were motivated by Cohen’s paper , Is

a brief note [61 on an ea rlie r rational approach to the subject of transverse

shear stiff ness in laminated anisotropic plate., which , for brevity ’s sake, was

limited to the case of plates !lth such symmetry as to allow a separate treat-

ment of transverse bending and stretching .

A study of the contents of [21 made it appear tha t the results In thi s

pape r , although quite different in appearance and deriva tion, should , for

t
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the symmetrical case , be In fact equivalent to the results reported in f6J .

This being the case, the present brief pape r~ although not present ing numer ica l

results  or procedu res , is thought to be of sot-n e inte rest from the point of view

of the development of computer methods in applied mechanics.

Briefly,  the present work  as well as the work in (2 1 and (6 j  s tarts  out

with a distribution of prima ry stresses In laminated plates corresponding to

a linear (Ki rchhof f ) distribution of pr imary strains. The second step in the

three papers Is a dete rmin ation of the associated statically consistent trans-

verse shearing stresses. The rema ining step is the use of an energy

principle for the utilization of these exp ressions for pr imary and transve rse

stresses for the purpose of obtaining two-dimensional constitutive equations

involving transverse shea r deformations and transverse shear stress

resultant.. En (61 this third step Is executed , not quite as simply as it might

have been done , th rough an application of the writer ’s vari ational princi ple

for stresses and displacement. [5). En Cohen’s work [21 this third step is

executed through an application of the principle of minimum complementary

energy (varia tional p rinciple for stresses ). In the present reconsideration

of the problem two types of results are presented. These are associated ,

respectively , with the variat1ona ’~ principle for stresses, or wi th  the va riatIon~.l

pr inciple for stresses and displacements. It ii found tha t , while Cohen ’s method

[21 depends on use of the stress principle , his results appear to be equivalent

to the results in f6J which  depend on the use of the stress and disp lacement

principle.
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We consider

a plate with inld plane coordinate s x
1
, x2, and with  thickness coordinate z.

We designate midplane parallel stresses by a~ , ~~~~ a~ ( w i t h  1
3 

represent ing

the shear stress 012 ‘zi~~’ and we desi gnate t ransverse  shearing stresses

by r 3 , r 2 . We assume that the deforniational effects of transverse normal

s t r e s s  - which would here be desi gnated by T
3 

- are neg li g ible , and we assume

that the relevant stress strain relations for the laminated anisotropic plate are

of the fo rm -

= E1. e . , ~~ = , (la , b)

with the coefficients E1. and G A I L 
being known functio is of a.

Given the stress strain relations ( la) , we now introduce as a basic

assumption for the analysis to be undertaken that the distribution of face-

para llel stresses may be approximated In the fo rm

= E1~
(zx . + (~) , 

- 

(2)

with and E.  being independent of z.

Equations (2) Imply as relations for stress couples and stress resul tants ,

= ~~~~ + C1~ E~ , N1 C 1~ *3 + B~. E~ , (3a , b)

where

(B1., C1., Di.) = J ( l , z , z2)E
13

ds . (4)

We agree to wr i t e  the inverted fo rm of (3) as

= D
J
’M~ + N . , = C~ .

1 M
3 

+ B . ’ N
3 

. (Sa , b)

In t roduction of 15) in to equation (2) leads to approximate expressions for face-

parallel stresses In term s of s t ress  couples and stress resultants of the fo rm

- 3 —
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0~ = H1. M3 
+ F1. N~ , (1,)

where

H1. = (z D~~ 4 C
~~~

)E ik ‘ F
13 

(zC~~ + Bk )E Ik (7)

Having equations (6), we use as assoc iated approximate expressions for

the transverse stresses T~ the equilibrium expressions

1 + 03 2 )dz = 4-c~°3 i + o2 2 )dz . (8)

in conjunction with the conditions of vanishing Y
~ 

for z +c. It Is evident from

(6) and (8) that , with suitable coeffic ients K and J. these expressions can be wr i t t en  as

= K
~~j~~

M
j~~ + J~~j~~

N
3~~ 

. (9)

Having equation (9) we now introduce , In additi on to the resultant. N . and

the couples M
3

, transverse shea r resultants Q~~, and we observe tha t the set

N
3
, M

3
, Q~ is subject to the fi ve two-dimensional equilibrium equations

M 1 1  + M 3 2  = M
3 3  +M 2 2  = 

‘ 01, ) ~~~~~~ = 0 . (10*)

N 3 1  + N 3 2  0 . N 3 1  + N2 2  = 0 . (lOb)

We may use equatIons (10) In o rder to express the T~ - instead of in te rms

of the twelve M . and N . - in term. of ten quanti~~es only, these being the

two transverse resultant. Q~~, and two sets of four quan tities RE and SE defi ned by

R 1 — M3 2  ft2 = M 1 2  ft3 = M3~~ - R = M 2 1 ,(l la)

N 1~~ — N 3 2  . Sa = N 3 , 2 S3 = N 3 3  - N2 2  S4 N 2 1  . ( l lb )

The resulting expressions for T
~ 

may be wri t ten  in the fo rm

T
A 

= AAU
Q

M + I AE R E + L AE SE , (12)

with the problem of the appropriate treatment of the quanti ties RE and St being

of particu lar  interest  In what follows .
-4- 5



Bending and Stretching Uncoupled. It I. sufficient for present pu rposes

to limit furthe r discus~lon to the uncoupled problem of transverse bending • which

Is given when aU the coeff icients E
13 

and In (1) are even functions of the

thickness coordinate a. We obtain the equations for uncoupled transverse

bending by setting

* 
= 0 • C~3 

= 0 , Fij = 0 3Aj~ 
= 0 , S~ = 0 , (13)

with the remaining plate problem now consiating of the standard equilibrium

equations (lOa) in conjunction with approximate two-dimensional constitutive

equations and strain displacement relations, w ith these having to be consistent

with the remaining portiona of equatibn. (2), (3) and (12).

Use of the ~~~~~~~~~~~~~~~~~~~~~~~~~ lementa ry Ester • We have as

three-dimensional strain energy density expression In terms of stresses , consis-

tent with the stress strain relations (la , b)

W = W0 + W ~ = fZ
~
’0j aj +1G

~~~
T
~~

T . (14)

Leaving aside botatdary condition considerations , we may obtain a

system of approximate two-dimensional const itutive equat ions by utilising the

variational equation

ô f f f Wds dx1cjx2 = o , (15)

In conjunction with the equilibri um st ress expressions

= K
~~j~~

Mj~~ (l6a , b)

subject only to the supplementary two-dimensional equilibrium equation

M 1 1 1  +2M 3 ~~ 
s M 2 2 2  = 0 (17)

-5-



which follows from (lOa) and which may be Introducted into ( 15) by means of a

Lagrangian multiplier function w(x 1,x2), as done f i r s t  for the isotrop ic homo-

geneous case in [3) .

We may alternately use the expression

= A~~~Q~ + I
~~~

R
~ 

(18)

for transverse shear where , necessa rily,

= 1_c
~~ t~~ 

= 0 . (19)

Int roduction of (18) into the associated strain energy portion W
T 
then gives fu rther

= Ii’ G~ ’ (A~~~Q + 5~z Rt~~A 0p + I~~ 1R0
)dz

= I(XV.
Q
V
Q
P
+2YVI)QV RQ +ZEO RERQ) (20)

while at the same time

I W 0 dz Lf c HIk HJI Mk M s dZ = 40 .
1 M 1 M . . (21)

Having equations (15) (20) and (21), in conjunction with the two-dimensional

equilibrium equations (IOa), we now consider the utilIzation of this system for

the derivation of app roximate two -dimensional cons titutive equations. In doing

this it Is of Interest to conside r a-certain sub-class of cases before considering

the general problem.

Plates for which Y.,,r = f ~ 
and Z -0 .  For this class of cases we may

establish con•stl tutive equations in the same manner as in [4) by Introducing the

equilibrium equations (b a) into (15) by means of three Lagrange multiplier

functions ~~~(x 1. x2) and w(x 1, x2 ), so as to have as a variational equation for

the derivation of constitutive equations
— i

-6-
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6J ’ J’[~ D~J
1
MjMJ 

+ !X X I I
Q

X
Q

~J +

+ (M 1 1 + M 3 2  
- Q

1 ) P 1 + (M3 ~ 

4 - Q2)~ 2 Jd~~1
d,t

2 = 0 . (22)

The resulting eqi’ations are

D1J
1
M

J 
= D2J

’M
J 

= . 
~ l,2 ~~~~~ • (23)

togethe r with

X 1~ Q~ = w + X2~ Q~ = ~ 2 + (24)

Plates for which some of the Y and Z are non-vanishing.tO

In considering the variational equation (15) for this general case, we must take

account of all or some of the terms with RE in equation (20), in a consistent

manner. This may be done without additional Lagrange multipliers by writing

the terms Rt in (20) in terms of de rivatives of the M1 in accordance wi th

equations (h a) and by then using the one constraint equation (17). Alternately,

we may introduce equations (h a) as constraint equations, through additional

Lagrange multipliers $~ . If we adopt the latter procedure, we obtain as a

generalization of the system (23) and (24) the following set of conet(tutive equations

D
1
M. q +$ +$lj j  1, 1 1, 1 2,2

D~J
’M

J 
- 

~3, 2 + 
~4 , 1 

(25)

= 
~~l , 2 + W 2 1  

- 

~ 1, 2 + $ 3 ,~

together with the two relations

X~ 0
Q

~~ + Y ~ 0 R0 = w ,, +~~~, , (26)

and the four relations

-7-



Y~~~Q~ + Zt0 Rt (27)

We note that  equations (25) to (27) ,  togethe r with the equi l ibr ium

equations (lOa) and the defining relations ( l h a ) ,  are a system of s ixteen

equ ations for the nine stress measures M1., 0,,, R~ and seven displacement

measures w , ~~~ ~~~ If we eliminate the quantit ite s Rt and $~ , we will be heft

with altogether eight equa tions for the M .., Q,,, w and W,,. We refrain from listing

these equations and limit ourselves to noting the important fact tha t the presence

of the geometrical variables $~~ in (27) means that it will now not be possib le to

take account of the effect of transverse shear defo rmations by neans of conetitu-

tive equations of a form as simple as the set (24).

A supplementary app roximation. It Is possible , formally, to use the

variational equation (15) for the derivation of approximate consti tutive equations

without requiring tha t the tra ns”erse shear stress distributions in (18) are in

exact th ree-dImensIonal equilibrium with the stresses CJ~ In (16k) although , in

this case, one then no longe r uses the principle of minimum complementary

energy but rathe r an ad hoc modification of this principle. One such non-rational

modification Is to ignore the fact that the quantities 
~~~ 

in (38) are defined In

terms of the ~~~~ in accordance with (13*) and to treat the R~ as s~~~plementary

free parameter functions. When this is done there Is then no Occasion for the

introduction of the Lagrange multiplier functions $~ and therew ith the consti tu-

tive equatIon system (25) to (27) becomes simp lified by the disappearance of all

$ -te rms. This fact is of part icular  significance insofa r as equations (26) andE

(27) are concerned , because it Is then posaible to solve (27) in the form =

and to write (26) in the wanted form w~~ + ~~~~ - YI,OZ~~~
YDEhQP

. 4
-8- 
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It appears tha t the results reported in (2), when specialized to the case

of uncoupled stretchin g and bending, are in fact  equivalent to wha t is obtained

in this particular fashion.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Use of

the variational equation

+ (Uz~~ 
+ u ~ 2 )r 2 - W ldz dx

1
dx

2 = 0

in place of equation (15), is known [5) to be consistent , without  a p r ior i  constraints

on stress distributions and with or without independent assumptions concerning

displacements. Consequently, Lf ’we depart from (28), we may now use the strair.

energy density expression

Wdz = 4[D~~ ML M. + ~~ ~~~~~ + 2 Y ,,0Q
~~

R0 + Zt0Rt R0J (29)

without considering (I la)  as constraint equations for the R0. Furthermore , if

we introduce as approximating expressions for displacements, Consistent with

the stress expressions 7~ z

u
X = z ~~ (x 1

, x2) , u = w(x 1 , x2) , (30a , b)

we then have in equation (28)

£:~~
u i , i

o
i +~~~ • + U 2 , z + u ~ , 2 T2Jdz  =~~~1 1

M
1 +~~2 2 M 2

+ ( q ~1 2  4 4 ~2 1)M 3 +
~

q’
~ ~~~ ~~~ ~~~~ 

+ w 2 )Q2 (3 1)

and the Euler equations of the remaining variational problem come out to be the

three two-dimensional equilibrium equations (10*) , together with constitut ive

equation of the form (23) . In conjunction with an abbreviated system of trans-

verse shear equat ions

-9-



+ Y,,0 R0 
= w

~~ ~~~~ Y1,0Q1, + Zt0 Rt = 0 , (32a ,b)

in place of the system (26) and (27~

We note that these results are  equivalent to the results in [I],  as

discussed at the end of the preceding section , and that they are also equivalent

to the results in [6], except tha t in thi s earlier work the shear stress equations

(16b) were taken , with the help of six functions R’
~~, in the form

TA (33)

in place of equations (18), with the Q~, in (3 1) following from (33) in the form

c 
*= d’_ c~

(
v j~~

th
~~~j u  ~~~~~~~~~~ . (34)

There occur , in connection with the use of (33) In place of (18) as

approximation for the inconveniences in regard to the appearance of singula r

matrices
t
. While it is possible to deal with these singularities as they occur

In specific cases , without affecting the validity of the results , it  is neve rtheless

preferable to isolate the effect of the Q~~-te rms , as in equations (18) .

The present author i~ indebted to Dr. Cohen for bringing thi s fact to his
attention.
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